Total stereo- and enantio-selective synthesis of 2,3-dideoxy-3-C-methylene-D-glycero-pentose and its ethyl furanosides

Yuri E. Raifeld*, Galina Ya. Vid, Igor E. Mikerin, Boris M. Arshava, and Antonia A. Nikitenko

Moscow Lomonosov Institute of Fine Chemical Technology, 86 Vernadsky Ave., Moscow 117571 (U.S.S.R.) (Received June 14th, 1991; accepted in revised form July 19th, 1991)

ABSTRACT

A total stereo- and enantio-selective synthesis of 2,3-dideoxy-3-C-methylene-D-glycero-pentose and its ethyl furanosides is described. The key reaction of the synthesis is formation of the 3-C-methylene function by catalytic isomerisation of an epoxy alcohol, obtained by silylation of 3-methyl-2-butenal, followed by condensation of the silyl ether with triethyl orthoformate, reduction of the aldehydo group, and Sharpless asymmetric epoxidation of the allylic alcohol. The overall yield is 17% from commercially available 3-methyl-2-butenal as the starting compound.

INTRODUCTION

Monosaccharides, which contain exocyclic double bonds are valuable compounds for use as starting materials in the synthesis of branched and functionally substituted carbohydrates^{1,2}. It is well known, for example, that various 3'-substituted nucleosides show antiretroviral activity^{3,4}. Thus, 2-deoxypentoses with an exocyclic double bond at the C-3 position might be very interesting as precursors of 3-C-methylene derivatives of nucleosides. We have found no communications dealing with synthesis of such deoxy 3-C-methylene-modified sugars.

RESULTS AND DISCUSSION

We have developed the method of total stereo- and enantio-selective synthesis of 2,3-dideoxy-3-C-methylene-D-glycero-pentose (9) and its ethyl furanosides 7 and 8 as shown in Scheme 1.

Condensation of 3-methyl-1-trimethylsilyloxy-1,3-butadiene (2, which was obtained in 72% yield by silylation of 3-methyl-2-butenal (1) with chlorotrimethylsilane according to a well-known method⁵ with triethyl orthoformate in presence of $ZnCl_2^6$) gave 5,5-diethoxy-3-methyl-2-pentenal (3) in 60% yield. Compound 3 was shown to be a 75:25 mixture of (E)-5,5-diethoxy-3-methyl-2-pentenal (3a) and (Z)-5,5-diethoxy-3-

^{*} To whom correspondence should be addressed.

104 Yu. E. RAIFELD et al.

*Only the (E) —isomers of compounds 3 and 4 are represented.

Scheme 1.

methyl-2-pentenal (3b), respectively, as determined by 1 H-n.m.r. spectroscopy. The mixture was reduced by Red-Al® [sodium bis(2-methoxyethoxy)aluminum hydride] and again gave a 75:25 mixture off (E)- and (Z)-5,5-diethoxy-3-methyl-2-penten-1-ol (4a and 4b, respectively) in 81% yield.

Since our goal was to obtain carbohydrates of the D-configuration, bis(2-propyl) D(-)-tartrate was used in the reaction as dictated by the Sharpless enantioselectivity rule^{7,8}.

As it is known that asymmetric epoxidation of an E double bond of allylic alcohols goes much faster than that for the Z double bond⁷, the mixture was subjected to the Sharpless asymmetric epoxidation⁹ without preliminary separation. Analysis of the reaction mixture by n.m.r. spectroscopy showed that the ratio of epoxides obtained from E and Z isomers was 98:2, respectively. Column chromatography of the reaction mixture gave (2R,3R)-2,3-epoxy-5,5-diethoxy-3-methylpentanol (5) in 90% yield, if only the E alcohol 4a is taken into consideration. An e.e. of 95% for compound 5 was determined by 1 H-n.m.r. spectroscopy of the Mosher ester derivative 10 .

TABLE I	
¹ H-N.m.r. data (δ, p.p.n	n.) for compounds 5–8°

		,	•					
Compound	H-1	Н-2	H-2'	H-4	H-5	H-5'	CH ₃	= <i>CH</i> ₂
5 ^b	4.61	1.63	1.89	2.90	3.55	3.68	1.26	_
6	4.63	2.31	2.38	4.12	3.42	3.57	_	4.99
								5.14
7	5.15	2.41	2.67	4.41	3.53	3.62		4.98
8	5.12	2.47	2.76	4.49	3.57	3.57		5.01
Coupling cor	nstants (H	z)					***	
Compound	J _{1,2}	J _{1,2} ,	J _{2,2}	J _{4.5}	J _{4,5'}	J _{5,5'}		
5	6.2	5.0	14.0	6.1	4.7	11.9		
6	5.6	5.6	14.8	7.0	4.0	11.2		
7	1.2	5.2	16.0	4.0	5.3	11.4		
					5.5			

^a In acetone-d₆. ^b Numbering of the H-atoms corresponds to the numbering of the sugar H-atoms in compounds 6-8.

(2R,3R)-2,3-Epoxy-5,5-diethoxy-3-methylpentanol (5) was used as the starting compound for the preparation of 2,3-dideoxy-3-C-methylene-D-glycero-pentose (9). We managed to synthesize the acyclic acetal 6 in 87% yield by refluxing epoxy alcohol 5 in benzene in the presence of a catalytic amount of titanium(IV) 2-propoxide for 3 h. Then cyclization of 6 in ethanol in presence of trace amount of HCl gave the α and β anomers of ethyl 2,3-dideoxy-3-C-methylene-D-glycero-pentofuranosides (7 and 8) in a 7:3 ratio as determined by n.m.r. spectroscopy (Tables I and II).

As we intended to use these glycosides in a nucleoside synthesis, it was necessary to develop a selective method of synthesis for 7 and 8. We researched in detail the effect of acyclic acetal concentration, HCl concentration, temperature, and process duration on the ratio of pyranosides: furanosides. From these studies we have managed to establish a set of conditions for the near-exclusive formation of furanosides 7 and 8. (The α and β anomers of ethyl 2,3-dideoxy-3-C-methylene-D-glycero-pentopyranosides in the mixture was determined to be <0.5% from the ¹³C-n.m.r. spectral data.)

Column chromatographic separation of 7 and 8 resulted in the isolation of ethyl 2,3-dideoxy-3-C-methylene- α -D-glycero-pentofuranoside (7) in 62% yield and ethyl 2,3-dideoxy-3-C-methylene- β -D-glycero-pentofuranoside (8) in 22% yield.

Hydrolysis of the acyclic acetal 6 in presence of QU-2 (H⁺) ion-exchange resin gave 2,3-dideoxy-3-C-methylene-D-glycero-pentose (9a, 9b) as a mixture of furanose (9a) and pyranose (9b) forms (Table II) in 84% yield (overall yield, 17%, in six steps).

TABLE II

¹³C-N.m.r. data (δ, p.p.m.) for compounds **5–9**"

Compound	Anomer	C-1	C-2	C-3	C-4	C.5	C-3'	OC,H,
ę.	l	101.30	43.59	58.30	63.84	61.45	17.70	61.25 61.93 15.58
9		103.25	37.38	146.06	75.57	66.24	113.35	61.86 61.59 15.51
7	a-D-furanoside (70%)	103.15	40.63	148.48	81.13	65.62	105.67	62.64 15.42
ac	β-D-furanoside (30%)	103.46	40.73	147.95	82.84	67.00	106.24	62.94 15.31
8 6	α -D-furanose (12%)	97.14	41.42	148.24	80.90	65.54	106.13	I
q 6		93.82 96.14	41.11	145.86 145.34	69.52 69.35	69.11 67.19	108.47 109.15	

" In acetone- d_6 . b Numbering of the C-atoms corresponds to the C-atom numbering in compounds 6-9.

EXPERIMENTAL

General methods. — N.m.r. spectra were recorded with either a Bruker CXP 200 (200 MHz, ¹H; 50 MHz, ¹³C) or AM 360 (360 MHz ¹H; 90 MHz, ¹³C) instrument for solutions in acetone- d_6 . Optical rotations were determined with a Perkin-Elmer model 141 spectropolarimeter. T.l.c. was conducted on Silufol UV₂₅₄ (Kavalier, Czechoslovakia) in 1:10 methanol-chloroform with detection by heating. Column chromatography was conducted on Silica Gel 60 (E. Merck).

3-Methyl-1-trimethylsilyloxy-1,3-butadiene (2). — To a suspension of anhydrous sodium iodide (180 g, 1.20 mol) in dry acetonitrile (300 mL) were added triethylamine (112 g, 1.11 mol), 3-methyl-2-butenal (1) (84.0 g, 1.00 mol), and pentane (400 mL) at room temperature, followed by the dropwise addition of chlorotrimethylsilane (109 g, 1.00 mol) at 35–38°. The mixture was stirred for 4 h at 40–45°, the resulting solid was filtered and washed with pentane (400 mL), and the solvent was evaporated at room temperature. Distillation of the residue gave 2 (112 g, 72%): b.p. $56-60^{\circ}/35$ torr; $n_{\rm D}^{20}$ 1.4496.

Anal. Calc. for C₈H₁₆OSi: C, 61.48; H, 10.32; Si, 17.97. Found: C, 61.59; H, 10.24; Si, 17.68.

5,5-Diethoxy-3-methyl-2-pentenal (3). — To a mixture of triethyl orthoformate (104 g, 703 mmol) and a 15% solution of $ZnCl_2$ in ethyl acetate was added 2 (109 g, 699 mmol), dropwise with stirring at room temperature. After 1 h at room temperature, saturated aq. NaHCO₃ (600 mL) was added. The resulting precipitate was filtered and washed with ether (600 mL). The aqueous phase was separated, the organic phase was washed with saturated aq. NaHCO₃ (200 mL), dried (K_2CO_3), and concentrated. Distillation of the residue gave 3 (78.0 g, 60%): b.p. 68–70°/3 torr; n_2^{50} 1.4590; ¹³C-n.m.r. data for E-isomer 3a: δ 191.12 (CHO), 159.71 (C-3), 129.85 (C-2), 101.74 (C-5), 61.75 (Et), 45.13 (C-4), 18.13 (CH₃), 15.46 (Et); for Z-isomer 3b: 191.20 (CHO), 159.04 (C-3), 130.27 (C-2), 62.61 (Et), 38.00 (C-4), 26.17 (CH₃), 15.56 (Et).

Anal. Calc. for C₁₀H₁₈O₃: C, 64.49; H, 9.74. Found: C, 64.72; H, 9.89.

5,5-Diethoxy-3-methyl-2-penten-1-ol (4). — Red-Al[®] (200 mL of a 30% solution in toluene, Aldrich) was added dropwise with stirring at 0° to a solution of 3 (50.0 g, 268 mmol) in ether (50 mL), and the mixture was stirred for 1 h at 0-5°. Saturated aq. NH₄Cl was then added dropwise at 0-5°, and the mixture was stirred for 30 min at 10-15°. The solid which precipitated was filtered and washed with ether (300 mL). The organic phase was separated, dried (K_2CO_3), and concentrated. Distillation of the residue gave 4 (41.0 g, 81%): b.p. 93-96°/0.5 torr; n_p^{20} 1.4550; ¹³C-n.m.r. data for E-isomer 4a: δ 133.44 (C-3), 128.45 (C-2), 102.76 (C-5), 61.32 (Et), 58.96 (C-1), 44.31 (C-4), 16.90 (CH₃), 15.54 (Et); for Z-isomer 4b: 134.25 (C-3), 128.51 (C-2), 102.61 (C-5), 62.11 (Et), 58.69 (C-1), 37.45 (C-4), 21.62 (CH₃), 15.60 (Et).

Anal. Calc. for C₁₀H₂₀O₃: C, 63.79; H, 10.71. Found: C, 63.71; H, 10.75.

(2R,3R)-5,5-Diethoxy-2,3-epoxy-3-methylpentanol (5). — A mixture of powdered, activated 4A molecular sieves (5 g) and CH₂Cl₂ (300 mL) was cooled to -20° . Bis-(2-propyl) D(-)-tartrate (3.51 g, 15.0 mmol), titanium(IV) 2-propoxide (2.84 g,

108 Yu. E. RAIFELD et al.

10.0 mmol), and tert-butyl hydroperoxide (45.5 mL, 4.4m in CH₂Cl₂) were added sequentially at -20° , and the resulting mixture was stirred for 30 min. A solution of 4 (18.8 g, 100 mmol) in CH₂Cl₂ (20 mL) was then added dropwise, and stirring was maintained for 8 h at -20° . At the end of this time, a 10% aq. solution of NaOH saturated with sodium chloride (8 mL) was added at -20° , and anhydrous MgSO₄ (8 g) with Celite (1 g) were added at $+10^{\circ}$. The mixture was stirred for 15 min and was then allowed to stand for an additional 1 h. The resulting suspension was filtered through a Celite pad, and the solid was washed with ether (3 × 50 mL) and filtered, and the washings were combined, dried (MgSO₄), and evaporated. Column chromatography (hexane-ether, gradient elution) of the residue on silica gel gave 5 (13.7 g, 67%): $R_{\rm p}$ 0.36; $n_{\rm p}^{20}$ 1.4465; [α]_p + 19° (α 3.5, methanol). For ¹H- and ¹³C-n.m.r. data, see Table I and II, respectively.

Anal. Calc. for C₁₀H₂₀O₄: C, 58.80; H, 9.87. Found: C, 58.76; H, 9.88.

2,3-Dideoxy-3-C-methylene-D-glycero-pentose diethyl acetal (6). — To a solution of 5 (2.04 g, 10.0 mmol) in benzene (80 mL) at 20° was added titanium(IV) 2-propoxide (1.42 g, 5.00 mmol). The mixture was refluxed for 3 h, then cooled to room temperature. Ether (30 mL) and saturated aq. NaHCO₃ (2 mL) were added and stirred for 30 min. The suspension was filtered through Celite pad, the solid was washed with ether (3 × 10 mL), and the solvent was evaporated. Column chromatography (20:1 chloroform-methanol) of the residue on silica gel gave 6(1.78 g, 87%) as a syrup: R_F 0.27; [α]_D + 12° (α)_D = 12°

Anal. Calc. for C₁₀H₂₀O₄: C, 58.80; H, 9.87. Found: C, 58.83; H, 9.85.

Ethyl 2,3-dideoxy-3-C-methylene-α-D-glycero-pentofuranoside (7) and ethyl 2,3-dideoxy-3-C-methylene-β-D-glycero-pentofuranoside (8). — To a solution of 6 (1.75 g, 8.58 mmol) in dry ethanol (230 mL) was added a 10% solution of HCl in ethanol (0.22 mL) at room temperature. The mixture was stirred for 30 min, then K_2CO_3 (0.1 g) was added, and the mixture was stirred for an additional 1 h. The solid was filtered and washed with dry ether (3 × 10 mL), and the solvent was evaporated. Column chromatography (chloroform) of the residue on silica gel gave 7 (0.84 g, 62%) as a syrup: R_F 0.42; $[\alpha]_D$ + 218° (c 2.0, methanol). Then eluted compound 8 (0.30 g, 22%) also as a syrup: R_F 0.49, $[\alpha]_D$ – 89° (c 1.9, methanol). For ¹H- and ¹³C-n.m.r. data, see Tables I and II, respectively.

Anal. Calc. for $C_8H_{14}O_3$: C, 60.74; H, 8.92. Found for 7: C, 60.70; H, 8.91; found for 8: C, 60.78; H, 8.96.

2,3-Dideoxy-3-C-methylene-D-glycero-pentose (9a, 9b). — To a solution of 6 (2.04 g, 10.0 mmol) in water (40 mL) was added QU-2 (H⁺) ion-exchange resin (0.4 g), and the mixture was stirred for 3 h at room temperature. The resin was then filtered and washed with water (2 × 5 mL), and to the filtrate was added BaCO₃ (0.6 g). The mixture was stirred for 30 min, the solid was filtered, the water was evaporated, and compound 9 was obtained (1.09 g, 84%) as a syrup: $R_{\rm F}$ 0.17; [α]_D +4° (c 2.0, H₂O). For ¹H- and ¹³C-n.m.r. data, see Tables I and II, respectively.

Anal. Calc. for $C_6H_{10}O_3$: C, 55.37; H, 7.75. Found: C, 55.33; H, 7.70.

ACKNOWLEDGMENT

The authors thank the AIDS Scientific Problems Council of the Academy of Medical Sciences (U.S.S.R.) for financial support of this work.

REFERENCES

- 1 N. K. Kochetkov, A. F. Sviridov, and M. S. Ermolenko, Tetrahedron Lett., 22 (1981) 4315-4318.
- 2 A. F. Sviridov, Progr. Khimii Uglevodov, (1985) 202-209.
- 3 L. Colla, P. Herdewijn, E. de Clercq, J. Balzarini, and H. Vanderhaeghe, Eur. J. Med. Chem.-Chim. Ther., 20 (1985) 295-301.
- 4 P. Langen, Antimetabolites of Nucleic Acid Metabolism, Gordon and Breach, New York, NY, 1975, pp. 258-260.
- 5 P. Cazeau, F. Duboudin, F. Moulines, O. Babot, and J. Dunogues, Tetrahedron, 43 (1987) 2075-2088.
- 6 S. M. Makin, R. I. Kruglikova, T. I. Popova, and A. I. Chernyshov, Zh. Org. Khim., 18 (1982) 960-964.
- 7 M. G. Finn and K. B. Sharpless, in J. Morrison (Ed.), Asymmetric Synthesis, Vol. 5, Academic Press, Orlando, FL, 1985, pp. 247-308.
- 8 K. B. Sharpless, S. S. Woodard, and M. G. Finn, Pure Appl. Chem., 55 (1983) 1823-1836.
- 9 Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. Masamune, and K. B. Sharpless, J. Am. Chem. Soc., 19 (1987) 5765-5780.
- 10 J. A. Dale, D. L. Dull, and H. S. Mosher, J. Org. Chem., 34 (1969) 2543-2549.